Resumen
(Ver Original en Inglés)
Probaré que toda 4-variedad geométrica simplemente conexa se obtiene como cubriente irregular de 3 hojas de $S^4$ ramificado a lo largo de una superficie embedida. Esto es el análogo cuatro dimensional de un resultado clásico de Hilden y se desprende de adaptar sus técnicas en el contexto de trisecciones de 4-variedades y superficies embedidas. Revisaré las técnias necesarias para hacer un bosquejo de la prueba.
Este es un trabajo conjunto con Blair, Cahn y Meier.